MATH 203: Calculus III

Second Periodic Exam

Student Name:
Student ID:
Exam Duration: 1:15 Hour
Date: 22/06/1435 H
The First Question
Let $\mathbf{r}(\mathbf{t})=\left\langle\sqrt{2-t}, \frac{e^{t-1}}{t}, \ln (t+1)\right\rangle$.

1. Find the domain of $\mathbf{r}(\mathrm{t})$.
2. Find $\lim _{t \rightarrow 0} \mathbf{r}(\mathbf{t})$.

The Second Question

Reparametrise the curve $\mathbf{r}(\mathbf{t})=\left\langle e^{2 t} \cos 2 t, 2, e^{2 t} \sin 2 t\right\rangle$ with respect to arc length measured from the point $(1,2,0)$ in the direction of increasing t.

The Third Question

Find the equation of the binormal plane of the curve given by the parametric equations

$$
x=2 \sin 3 t \quad y=t \quad z=2 \cos 3 t
$$

at the point $(0, \pi,-2)$.

The Fourth Question

Find the curvature and the binormal vector of the space curve $\mathbf{r}(\mathbf{t})=\left\langle t, t^{2}, t^{3}\right\rangle$ at the point $(0,0,0)$.

The Fifth Question

Let $\mathbf{r}(\mathbf{t})=\langle 3 \sin t, 3 \cos t\rangle, 0 \leqslant t \leqslant \frac{\pi}{2}$.

1. Find the velocity, acceleration and speed of the particle with the given position function $\mathbf{r}(\mathbf{t})$.
2. Sketch the path of the particle and draw the velocity and acceleration vectors for $t=0$.

The Sixth Question

Classify the quadric surface $4 y^{2}+z^{2}-x-16 y-4 z+20=0$ and identify its traces.

